Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542896

RESUMO

The effects of high-pressure processing (HPP) (450 MPa/600 MPa/3 min) on the carotenoid and vitamin E contents of smoothies made from strawberry, orange juice, banana and apple, and the same smoothies enriched with dietary fiber from discarded carrots were compared. The contents and bioaccessibilities of these compounds were also evaluated over the course of 28 days at 4 °C. The application of HPP in the formulations significantly increased the contents of ß-cryptoxanthin, α-carotene and ß-carotene and retained the contents of lutein, zeaxanthin and vitamin E compared to untreated samples. A decreasing trend in the content of each compound was observed with an increase in storage time. The application of HPP initially led to reductions in the bioaccessibility of individual compounds. However, overall, during storage, there was an increase in bioaccessibility. This suggests that HPP influences cell structure, favoring compound release and micelle formation. HPP is a sustainable method that preserves or enhances carotenoid extractability in ready-to-drink fruit beverages. Furthermore, the incorporation of dietary fiber from carrot processing discards supports circular economy practices and enhances the health potential of the product.


Assuntos
Daucus carota , Daucus carota/metabolismo , Vitamina E/análise , Frutas/química , Carotenoides/análise , Fibras na Dieta/análise
2.
Foods ; 9(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113877

RESUMO

Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers' growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs.

3.
Food Sci Technol Int ; 22(6): 485-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26769132

RESUMO

The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties.


Assuntos
Desinfecção/métodos , Fragaria/efeitos dos fármacos , Fragaria/microbiologia , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Compostos Fitoquímicos/metabolismo , Pigmentos Biológicos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Relação Dose-Resposta a Droga , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Oxidantes/farmacologia , Fatores de Tempo , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...